International Institute for Applied Systems Analysis (IIASA)

Current and Future Emissions of Ammonia in China

Z. Klimont

10th Annual Emission Inventory Conference: One Atmosphere, One Inventory, Many Challenges May 1-3, 2001, Denver, CO

Why ammonia?

- Plays a role in acidification and eutrophication of ecosystems but 'forgotten' a bit so far;
- Importance of NH₃ is growing since efforts are under way to reduce emissions of other pollutants;
- Several atmospheric modeling studies initiated recently in East Asia;
- The models need spatially and temporally disaggregated data but currently available inventories lack the necessary detail.

Inventory resolution

IIASA

Spatial resolution

- Chinese provinces, including Hong Kong
- 1° x 1° degree grid system (longitude/latitude)

Temporal resolution

 Annual estimates for 1990, 1995, 2000, 2010, 2020, and 2030

Sectoral resolution

Anthropogenic sources only:
 eight livestock categories, fertilizer production and application, other activities

Emission sources included

Livestock farming

 cattle (dairy and other), pigs, poultry, sheep, goats, horses, camels

Mineral fertilizer application

Urea, ammonium bicarbonate, other N-fertilizers

Nitrogen fertilizer production

Other sources

Methodology

IIASA

$$E(NH_3)_{i,l} = \sum_{j} L_{j,l} \sum_{k} \sum_{s=1}^{4} [ef_{i,j,l,s}(1 - \eta_{i,k,s}) X_{i,j,k,l}] + \sum_{m} [nf_{i,m}(17/14)FC_{i,m,l} + ef_{i,m}FP_{i,m,l}] + OS$$

where:

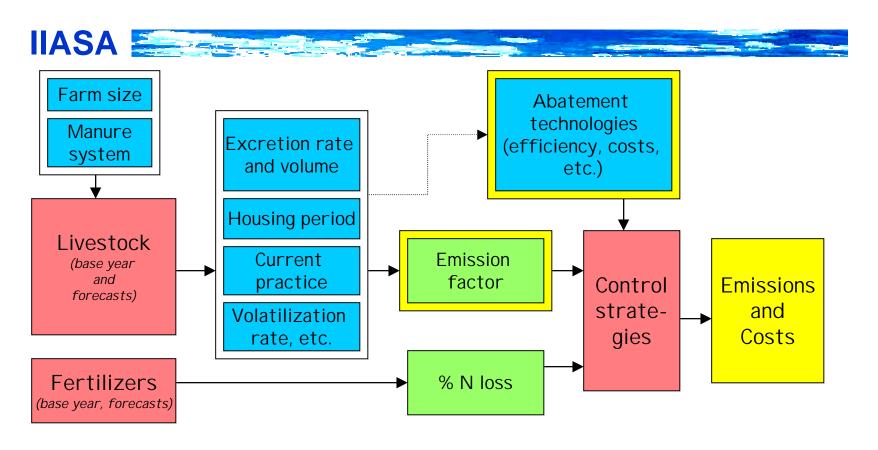
i,j,k,l,m - province, animal type, abatement, year, fertilizer type;

s - four stages, i.e. animal house, storage, application, grazing;

L - animal population [thousands head];

FC - fertilizer consumption [Gg N/year];

FP - fertilizer production [Gg N/year];

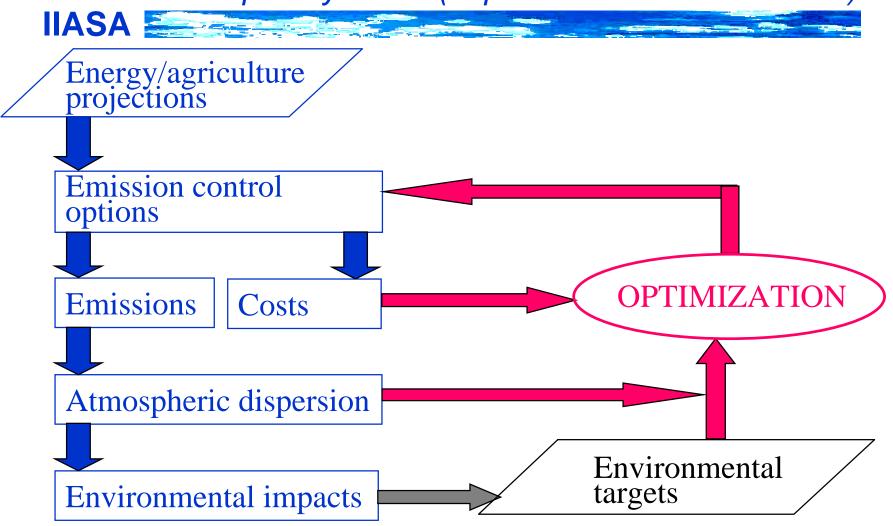

ef - emission factor [kg NH₃/animal; kg NH₃/Mg N-fert.produced);

- nitrogen loss per fertilizer [% of N content/100];

 η - removal efficiency;

implementation rate of the abatement technique.

RAINS - Ammonia module



Legend:

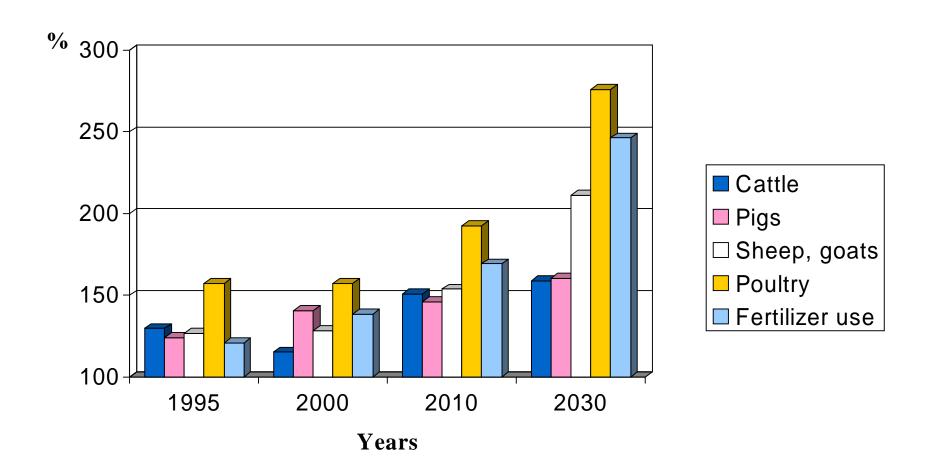
The model: RAINS

developed by IIASA (http://www.iiasa.ac.at/~rains)

Activity data: Sources

- Statistical data for 1990-95 from national yearbooks,
 FAO, IFA, OECD (difficulties in spatial allocation)
- Projections for 2000, 2010 and 2030 derived from agroeconomic studies (*OECD*, 1995-99; Alexandratos, 1995; Simpson, 1997) and other work (*Li*, 1997; Wang, 1997; Bouwman and Hoek, 1997; Lin et al., 1996; IFA, 1997)
- Spatial distribution derived from LUC project at IIASA, Li, Isherwood, Wang (1997)

Forecast of activity levels



The principal elements of the forecast include:

- Future per capita consumption of milk, beef, pork, poultry, other meat and rates of fertilizer application;
- The change in efficiency of production;
- The import-export balance of dairy products, meat, etc.
- Possible impact of the change of efficiency of production on emission rates.

Assumed change in livestock numbers and fertilizer use in China

IIASA 🚪

Emission factors and more

- Originate from national and international sources as well as expert judgement;
- Country, region and sector specific parameters taken into account (including climate conditions where appropriate);
- Autonomous improvement as well as changes in production efficiency considered.

Comparison of emission coefficients

(kg NH₃/animal; %N loss for fertilizers)

Category	IIASA, Rains-Europe	EEA, 1996	Asman, 1990	Bouwman et.al., 1997	This study
Dairy cows	22 - 40	28.5	25.1	17.4	19.4 - 24.8
Other cattle	10 - 18	14.3	25.1	10.0	9.5 - 9.9
Pigs	3 - 7	4.8	4.8	4.8	4.8
Laying hens	0.16 - 0.42	0.37	0.32	0.24	0.32
Broilers	0.14 - 0.23	0.28	0.32	0.24	0.18
Sheep ^a	1 - 3	1.34	1.9	1.2	1.2
Horses b	12.5	8	12.5	10.6	10.6
Camels	-	-	-	12.9	12.9
Urea application	15 - 20	15	15	15/25 °	15/20 °
ABC application	-	-	-	20/30 ^c	20/30 ^c

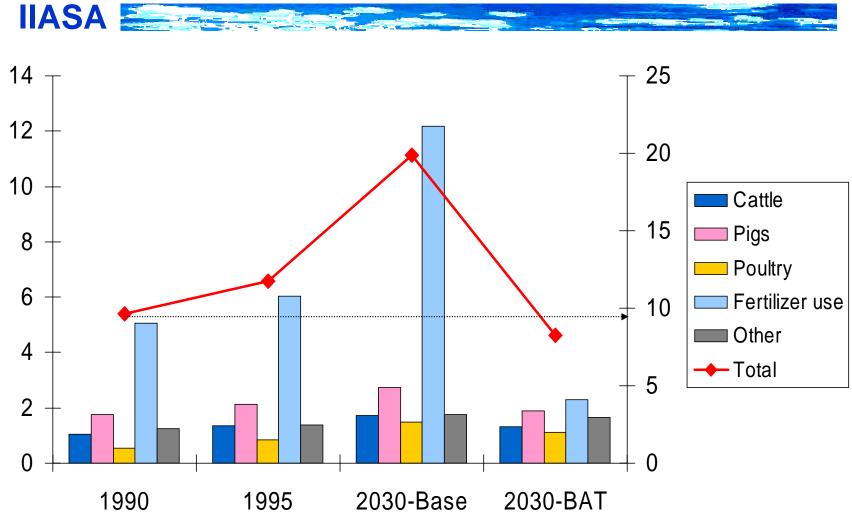
^a - includes goats

b - includes mules and asses

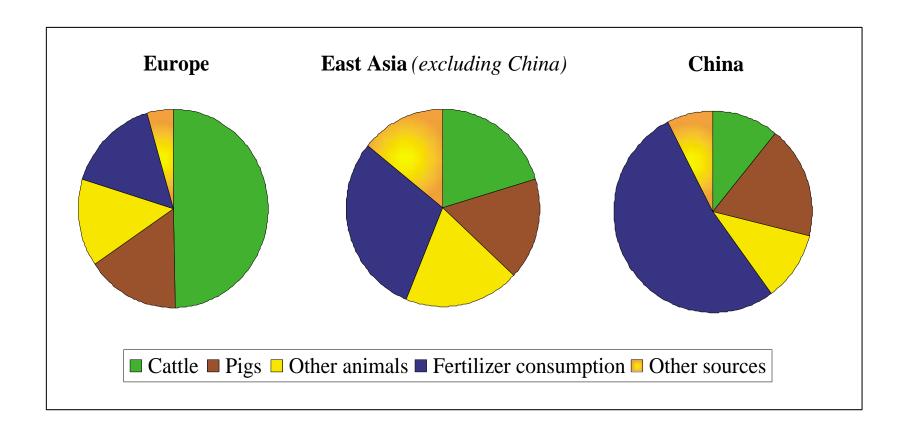
^c - loss assumed for temperate and tropical zones, respectively

Control techniques

- Low nitrogen feed;
- Biofiltration (air purification);
- Animal housing adaptation;
- Covered storage of manure;
- Low ammonia application techniques;
- Substitution of urea and ABC;
- End-of-pipe options for fertilizer plants.

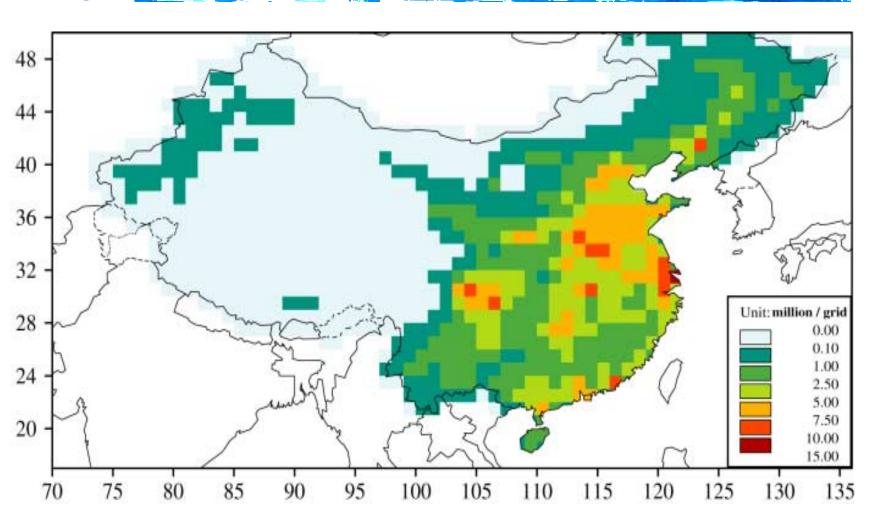

Emissions of NH₃ by sector in China,

 $(Gg NH_3)$

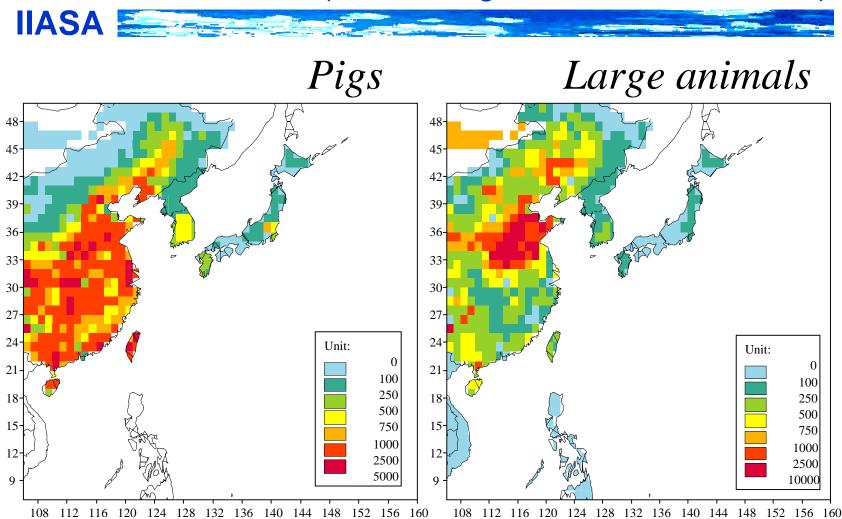

Sector	1990	1995	2030 (Base)	2030 (BAT)
Cattle	1040	1341	1716	1300
Pigs	1744	2124	2749	1900
Sheep and goats	250	330	549	500
Poultry	536	843	1479	1100
Horses, asses, mules	283	273	204	204
Camels	6	5	3	3
N-fertilizer application	5073	6049	12174	2300
N-fertilizer production	29	37	90	45
Other	696	736	901	901
Total	9658	11738	19866	8253

Ammonia emissions in China

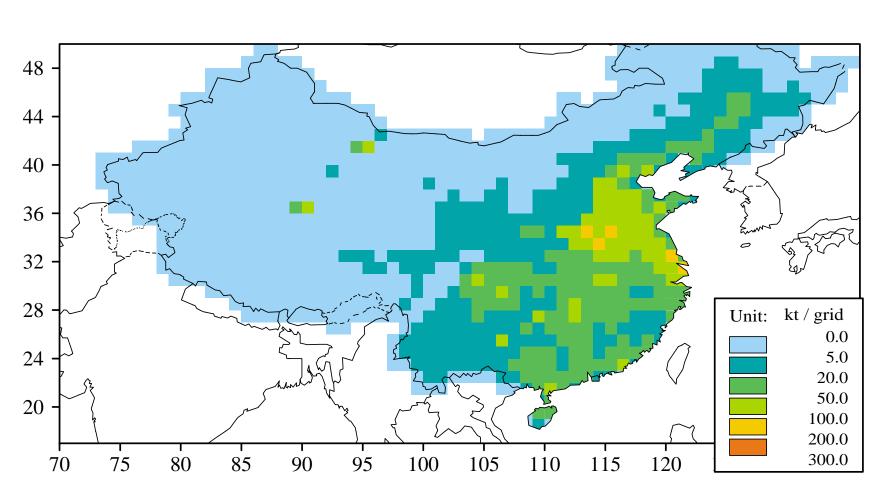
 $(Tg NH_3)$


NH₃ emission structure in China and other regions in 1990

Population density


(10⁶ capita/grid, data for 1990-95)

Spatial distribution of livestock in East Asia


(10³ head /grid; data for 1990-1993)

Spatial distribution of NH₃ emissions in 1995

 $(Gg NH_3 / grid)$

Spatial distribution of NH₃ emissions in 2030

 $(Gg NH_3 / grid)$

Comparison of NH $_3$ estimates for China for 1990, (Tg NH $_3$)

IIASA

Source	1990
Zhao and Wang, 1994	13.6
Bouwman et al., 1997	13.0 a
This study	9.7

^a This estimate is for the whole of East Asia

Conclusions

- Current structure of NH₃ emissions in China differs from that of Europe and also from other East Asian countries;
- The main contribution to ammonia emissions comes from urea and ammonium bicarbonate application;
- Emissions of NH₃ are expected to double by 2030 in spite of assumed improvement in production efficiency;
- More work needs to be done to improve our understanding of the local factors, including distribution of activities;

Necessary improvements

IIASA 🚟

- Filling in gaps in historical data;
- Locally validated emission factors;
- Spatial (provincial and lower level) distribution of activities in the past and analysis of the possible future developments;
- Incorporation of the land use data in order to better estimate the patterns of fertilizer application.

Acknowledgment

This project was developed in connection with a study of large scale environmental problems in East Asia, funded by the Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan